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We study the XXZ spin-one quantum magnet with single-ion anisotropy on the kagome lattice as an example
where quantum fluctuations on highly degenerate classical ground states lead to various exotic quantum ground
states. Previous studies have predicted several quantum phases, but different analytical approaches do not
necessarily lead to the same physical picture. In this work, we use quantum Monte Carlo computations to
critically examine some of the predictions made in the string-net mean-field theory and the degenerate pertur-
bation theory combined with duality analysis and effective-field theory. It is found that the resulting phase
diagram differs from some of the previous predictions. Further implications of our results to different analytical
approaches are discussed.
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I. INTRODUCTION

Macroscopic degeneracy of classical ground states in
frustrated magnets is a fertile ground for emergence of un-
usual quantum ground states such as spiral magnetic order,
quantum spin liquid, and valence bond solid �VBS� that oc-
cur via quantum fluctuations.1 Any perturbation on the de-
generate classical ground states, however, is inherently
strong and there may also be more than one competing
ground states that are extremely close in energy. The situa-
tion is very reminiscent of quantum Hall states that emerge
from highly degenerate Landau levels. This is indeed one of
the reasons why identification of true quantum ground state
in frustrated magnets is such a difficult task.

Different kinds of nonperturbative analytical approaches
have been proposed in literature to understand this quantum
order �or disorder� by disorder phenomena. These ap-
proaches include various degenerate perturbation theories,2

duality analysis combined with effective-field theories,1,2 and
string net condensation picture.3 Since different approaches
may not necessarily lead to the same conclusion, it is impor-
tant to understand the limitations of various approaches. One
useful way to obtain such information is doing unbiased nu-
merics by appropriately choosing concrete examples where
predictions from different approaches may vary.

Here we consider the following spin-one XXZ model with
single-ion anisotropy on the kagome lattice as such an ex-
ample.

H = − J��
�ij�

�Si
xSj

x + Si
ySj

y� + Jz�
�ij�

Si
zSj

z + D�
i

�Si
z�2, �1�

where J�, Jz, D�0, the first two sums run over the nearest
neighbors on the kagome lattice, and D is the strength of the
single-ion anisotropy. This model is also equivalent to a bo-
son model with nearest-neighbor repulsive interaction where
boson occupation number can only assume 0, 1, and 2. Pre-
viously two different analytical approaches have been used
to study the phase diagram of this model. Using degenerate
perturbation theory and mapping to a dimer model combined
with duality analysis, Xu and Moore4,5 predicted that there
exist three different phases: an XY ferromagnetic phase for

J��Jz, D, a plaquette valence bond solid phase with reso-
nating hexagons �VBS-H� for J��D�Jz, and a gapped
“photon” �quantum paramagnetic� phase for J��Jz�D. The
gapped photon phase is a descendant of an unstable two-
dimensional quantum spin liquid phase with linearly dispers-
ing neutral photon modes. It was also predicted that there
would be a direct transition between VBS-H and a gapped
photon phase. Using a quite different approach, Levin and
Wen6 proposed a mean-field theory where a class of varia-
tional wave functions based on the so-called “string-net” pic-
ture was used to map out the global phase diagram. While
they also predict the existence of a plaquette phase as well as
a gapped photon phase, their plaquette phase is characterized
by frozen spin configurations and this frozen plaquette �FP�
phase is different from VBS-H in lattice and spin
symmetries.6 In this string-net mean-field theory, the photon
phase corresponds to the string-net condensed phase6 and the
unstable two-dimensional spin liquid phase mentioned
above. This photon phase was found in a narrow region
around Jz�D if one ignored the nonperturbative instanton
contribution. The photon excitation acquires a finite gap,
however, due to the instanton effect in 2+1 dimensions.6,7

The resulting state is an ordinary quantum paramagnetic
state.

In this work, we map out the phase diagram of the model
given by Eq. �1� using quantum Monte Carlo method. We
use a plaquette generalization8 of the stochastic series expan-
sion algorithm.9 We consider only the parameter region J�

�0, Jz�0, and D�0. The schematic phase diagram is
shown in Fig. 1. First, we find that a plaquette-ordered VBS
phase indeed arises and it is the VBS-H phase not the FP. In
addition to the phases discussed in the previous works, we
also find an additional phase with resonating lattice units for
small values of D /Jz and J� /Jz. The ground state in this
region is either a valence bond phase with resonating tri-
angles �VBS-T� or a valence bond phase with resonating
bow ties �VBS-B�. It was argued in Ref. 5 that there should
be a direct continuous transition from the VBS-H phase to
the paramagnetic �gapped photon� phase. We do not observe
such a transition for J� /Jz�0.08. However, we cannot fully
rule out the possibility of a direct VBS-H-paramagnet phase
transition at even smaller values of J� /Jz. We do not study
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the phase diagram for J� /Jz�0.08 as we experience prob-
lems with algorithm efficiency.

The rest of the paper is organized as follows. In Sec. II,
we will discuss the details of the phase diagram and proper-
ties of all the phases discovered in the numerics. Here we
also discuss the difference between our results and the pre-
dictions of previous works. We discuss the implications of
our results to various analytical approaches in Sec. III.

II. CONSTRUCTION OF THE PHASE DIAGRAM

A. VBS-H phase

We begin with the analysis of the VBS-H phase that is
found in a wide lobe as shown in Fig. 1. This phase has
plaquette order. Two different plaquette phases were pro-
posed previously for this region of parameters. In the
plaquette phase �VBS-H� predicted by Xu and Moore,4,5

spins resonate on a third of the total number of hexagons.
These spins have �Si

z�=b /2 around resonating hexagons,
where b is some number. The rest of the spins are fixed to
�Si

z�=−b. In the FP phase predicted by Levin and Wen,6 spins
are frozen on a third of all the hexagons with alternating
values of �Si

z�= �a around those frozen hexagons; the rest of
the spins has �Si

z�=0.6 Thus, these two phases break the Ising
and lattice symmetries in different ways. Note that these two
phases can also be distinguished by the distribution function
of �Si

z� �more discussions are given below�.
In the resonating plaquette phase, the bond-bond correla-

tion functions should have peaks in momentum space corre-
sponding to the specific pattern in real space characterizing
plaquette bond order. In Fig. 2, we show the bond-bond cor-
relations function in real space that is given by

Cb�r	 − r
� = �� 1

�
	 B	�d� − B0
� 1

�
	 B
�d� − B0
� ,

�2�

where B�i,j�,�=J��Si
xSj

x+Si
ySj

y� is the off-diagonal bond op-
erator �at imaginary time �� of the bond  connecting spins i
and j and B0 denotes the background bond strength. In Fig.
2, one can clearly see the pattern that is compatible with the

VBS-H phase. To confirm that the bond order is long ranged,
we show in Fig. 3 the finite-size scaling of the equal time
bond-bond structure factor Sb�q� at the ordering wave vector
q=Q0= �4� /3,0�,

Sb�q� = N�Bq�
† Bq�� , �3�

where Bq�= �1 /N��B� exp�iqr�. Note that the expression
of Bq� involves the sum over the bond index , and N is the
number of sites. The structure factor divided by the number
of sites clearly goes to a finite value in the thermodynamic
limit even though the extrapolated value is quite small.

On the other hand, the bond-bond correlation described in
the previous paragraph might also be compatible with the FP
phase. More robust diagnostic is the distribution function of
local �Si

z�, which should have two peaks for the VBS-H
phase and three peaks for the FP phase if the system is in one
of the six degenerate symmetry-broken states.10 For each
Monte Carlo configuration, we compute the time-averaged

S̄i
z= �1 /���0

�d�Si�
z , Si�

z is the z component of the spin operator
at site i and imaginary time �. In Fig. 4, the distribution
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FIG. 1. �Color online� The phase diagram is based on Monte
Carlo simulations. First-order phase transitions are denoted by thin
lines �blue and green online� and a continuous phase transition is
denoted by a thick line �red online�.
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FIG. 2. �Color online� The correlation function Cb�r1−r
� be-
tween the bond indicated by a large text �red online� and the other
bonds for L=24, Jz /J�=10, D /Jz=0.4, and T=J� /48. Resonating
hexagons are denoted by thick lines.
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FIG. 3. �Color online� Finite-size scaling of the equal time
bond-bond structure factor Sb�Q0� for Jz /J�=10, D /Jz=0.4, and
T=J� /48. In this and the other structure factor plots, error bars �if
not visible� are smaller than the symbol sizes, and the line shows a
linear extrapolation to the thermodynamic limit.
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function of S̄i
z is shown. The distribution function has two

peaks; one sharp peak at −b and the other broader peak at
b /2. This is what we expect for the VBS-H phase. For the
frozen plaquette phase, one expects three peaks at a, 0, and
−a.

The VBS-H phase also has magnetic order. In Fig. 5, we
show the finite-size scaling of the equal time spin-spin struc-
ture factor at q=Q0,

S�q� = N�Sq�
† Sq�� , �4�

where Sq�= �1 /N��iSi�
z exp�iqri�.

Therefore, our Monte Carlo data are consistent with the
resonating plaquette phase �VBS-H�. It is worth noting that
the VBS-H phase is quite similar to the VBS phase discov-
ered in the hard-core boson model on the kagome lattice at
fillings of 1/3 and 2/3 �for details, see Refs. 11 and 12�.

B. VBS-T(B)

Another interesting result in this work is the discovery of
another phase with resonating plaquettes at small values of
D /J� and large values of Jz /J� as shown in Fig. 1. This
phase was not predicted before. There are actually two dif-
ferent competing phases that are very close in energy. Tri-
angles resonate in one of those phases �VBS-T phase� and
bow ties resonate in the other one �VBS-B phase�. We are
not able to determine reliably which phase is the true ground
state.

We find that there is a finite temperature transition from
the high-temperature paramagnetic phase to the resonating
phase for Jz /J��10 and D close to zero. We have not at-

tempted to obtain the precise location of this transition. The
transition temperature T0J� /10 for Jz /J�=10.5 and D=0.
Typically, we find the VBS-T just below the transition and
either the VBS-T or VBS-B phase at much lower tempera-
tures depending on the configuration we start our Monte
Carlo simulations with.

The bond-bond correlators have well-pronounced peaks at
Q1= �� ,0�, Q2= �0,��, and Q3= �� ,�� in the VBS-T phase
and at those and other symmetry-related points in the VBS-B
phase. In Fig. 6, the finite-size scaling of the equal time
bond-bond structure factor Sb�Q3� defined in Eq. �3� is
shown for the VBS-T phase. The structure factor divided by
the number of sites scales to a finite value in the thermody-
namic limit indicating long-range valence bond order. Note
that the VBS order parameter is very large13 in sharp contrast
to the VBS-H bond order parameter and to some other mod-
els, in which the VBS order was confirmed in quantum
Monte Carlo simulations.11 To investigate the nature of the
VBS-T�B� phase, we study the real-space correlation func-
tion defined in Eq. �2�. As shown in Figs. 7 and 8, the VBS-T
phase exhibits a network of resonating triangles and the
VBS-B phase shows a network of resonating bow ties.

It is worth noting that the presence of the insulating phase
at D=0 is in sharp contrast to the spin-1/2 XXZ model with
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FIG. 4. �Color online� Probability distribution �arbitrary units�
of S̄i

z for L=48, Jz /J�=10, D /Jz=0.4, and T=J� /48. The distribu-
tion function is independent of the system size �not shown�.
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FIG. 5. �Color online� Finite-size scaling of the equal time spin-
spin structure factor S�Q0� for Jz /J�=10, D /Jz=0.4, and T
=J� /48.
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FIG. 6. �Color online� Finite-size scaling of the equal time
bond-bond structure factor Sb�Q3� for Jz /J�=10.5, D=0, and T
=J� /12.
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FIG. 7. �Color online� The correlation function Cb�r1−r
� be-
tween the bond indicated by a large text �red online� and the other
bonds for L=12, Jz /J�=10.5, D=0, and T=0.05J�. Resonating
triangles �trimers� are denoted by thick lines.
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ferromagnetic XY and antiferromagnetic Ising exchange in-
teractions on the kagome lattice, where the uniform XY fer-
romagnet persists at any finite value of J� /Jz.

11,12

The appearance of the VBS-T or VBS-B state can be
qualitatively explained as follows. Let us first consider the
D=0 case. The classical model �J�=0� has the ground-state
constraint such that each triangle on the kagome lattice
should have one of the spin arrangements ++−, +−−, or +0
− �and permutations�, where the eigenvalues of the spin-1 Sz

operator are denoted by +, −, and 0. There are many different
ways to arrange classical spins on the lattice to fulfill the
above constraint, leading to a highly degenerate classical
ground-state manifold. The third group of states �+0− and
permutations� is quite special in the quantum case—a kinetic
term �or an XY term� acting on such a state leaves the spins
on a triangle �a flippable triangle� in the classical ground-
state manifold; for example, S1

+S2
−�0+−�= �+0−�. In general,

such a move may violate the classical ground-state constraint
on the neighboring triangles. However, it does not violate the
constraint in the special case when the three neighboring
triangles of a flippable triangle have + and − spins as shown
in Fig. 9. Thus the flippable triangles can resonate without
leaving the classical ground-state manifold. This consider-

ation naturally leads to the following wave function that has
a kinetic-energy gain of J� �over the classical ground states�
in first-order �degenerate� perturbation theory,

��� = �0 + − � + �0 − +� + �+ 0−� + �− 0+� + �+ − 0� + �0 − +� .

On the other hand, two flippable triangles shown in Fig. 9
can resonate simultaneously giving rise to a resonating bow
tie. It is expected that turning on an infinitesimal J� will
favor the spin configurations where either the number of in-
dependently resonating triangles or the total number of reso-
nating triangles is maximized. In the latter case, we expect
that resonating bow ties are close packed as shown in Fig. 8.
This arrangement of bow ties violates the classical ground-
state constraint, and one needs to project out the components
of the wave function that violate the constraint.14 It is not
possible to determine which state has lower energy based on
the above analysis.

Therefore, quantum fluctuations lift the macroscopic de-
generacy of the classical ground states and gives rise to a
VBS phase via quantum order by disorder mechanism. The
VBS phase should survive at small but finite values of D /Jz
because of a finite excitation gap. The state with maximal
number of independently flippable triangles is exactly the
VBS-T state that is found in quantum Monte Carlo simula-
tions, i.e., the configuration shown in Fig. 7. The spin con-
figuration, where all the flippable triangles resonate, is the
VBS-B phase and is shown in Fig. 8. The energies of those
two states are very close.

As we have noted above, the bond order is very strong in
the VBS-T�B� phase. This may be explained by the fact that
the VBS-T phase can be chosen via resonating triangles in
first-order perturbation theory, whereas, in most of other
cases �including VBS-H�, plaquette resonance is obtained in
higher-order perturbation theory. As a result, the VBS-T�B�
phase may be more robust than other cases.

C. Superfluid-paramagnet phase transition

In this subsection, we discuss the phase transition be-
tween the superfluid �or XY ferromagnet in spin language�
and the featureless quantum paramagnet. Our numerics show
that this transition is continuous and most likely belongs to
the 3d XY universality class. We analyze the finite-size scal-
ing of our data as follows. We measure the superfluid density
by measuring the winding number fluctuations.15 In the vi-
cinity of a continuous transition, the superfluid density scales
as

�s = L−zF�s
�L1/��Kc − K�,�/Lz� , �5�

where F�s
is the scaling function, L is the linear system size,

z is the dynamical critical exponent, � is the correlation
length exponent, Kc−K= �D /Jz�c−D /Jz is the distance to the
critical point, and � is the inverse temperature. To cross the
phase boundary, we change D and keep Jz fixed. The data
scale very well with the dynamical critical exponent z=1. In
Fig. 10, the superfluid density �s times the system size L is
shown as a function of the coupling constant. As follows
from the above scaling form, the curves for different system
sizes should cross at the transition point if the ratio � /Lz is
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FIG. 8. �Color online� The correlation function Cb�r1−r
� be-
tween the bond indicated by a large text �red online� and the other
bonds for L=12, Jz /J�=10.5, D=0, and T=0.002J�. Resonating
bow ties are denoted by thick lines.
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FIG. 9. �Color online� A sample configuration in which the cen-
tral triangle can resonate without leaving the classical ground-state
manifold.
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fixed. Such a distinct crossing point is seen at �D /Jz�c
=1.2124. It also follows from Eq. �5� that the curves for
different system sizes should collapse onto a universal curve
for appropriate values of � and �D /Jz�c when �sL is plotted
as a function of ��D /Jz�c−D /Jz�L1/�. In Fig. 11, we show
such a data collapse for �=0.67�2� and �D /Jz�c=1.2124�2�.
The error bars are estimated from the stability of the data
collapse with respect to varying the fitting parameters. Thus
one may conclude that the superfluid-paramagnet quantum
phase transition is continuous. One may also infer that the
transition is in the 3d XY universality class from �=0.67�2�.
However, we have not measured the other critical exponents
that could be used to unambiguously confirm this prediction.

D. Superfluid-VBS phase transitions

The quantum phase transitions out of the superfluid phase
to VBS phases are strongly first order. As an example, let us
consider the transition from the superfluid phase to the
VBS-T phase. In Fig. 12, we show the superfluid density �s
as a function of Jz /J� at different temperatures. The super-
fluid density jumps at large values of Jz /J� indicating a tran-
sition to an insulating phase �VBS-T phase�. We confirm that
the transition is strongly first order by observing hysteresis
effects upon increasing or decreasing Jz /J� across the tran-
sition �not shown� and by a double-peaked structure in the
distribution of the XY energy �kinetic energy of bosons�,
J��Si

xSj
x+Si

ySj
y�, close to the transition �not shown�.

The transition from the superfluid phase to the VBS-H
phase is also first order. In the top part of the VBS-H lobe
�see Fig. 1�, the first-order nature becomes somewhat weaker

as the value of J� /Jz is decreased. We do not observe a direct
transition from the VBS-H phase to the quantum paramag-
netic phase, which was predicted in Ref. 5, in the parameter
region we can access, i.e., for J� /Jz�0.08. There is a nar-
row region of the superfluid phase between those two phases,
as shown in Fig. 1. However, we cannot rule out the possi-
bility that there might be a direct transition at much smaller
values of J� /Jz.

III. DISCUSSION

We now discuss possible origins of the discrepancy be-
tween our quantum Monte Carlo results and those of previ-
ous analytic approaches with various approximation
schemes.4–6 In particular, it is found that the VBS-H phase,
not the FP, is the stable ground state for moderate strength of
D /Jz and small J� /Jz. This suggests that the string-net mean-
field theory analysis in a previous work6 may not be suffi-
cient for the identification of the true ground state.

The string-net picture starts from an alternative represen-
tation of the spins on the kagome lattice, where the spins are
considered to be in the middle of the links connecting the
sites of the honeycomb lattice �that can be obtained by con-
necting the centers of triangles on the kagome lattice�.6 This
honeycomb lattice is a bipartite lattice and consists of A and
B sublattices. The occupation of a given link I= �ij� by a
string is defined as follows: the link contains an oriented
string pointing from i�A to j�B if SI

z= +1 and from j to i
if SI

z=−1. The link is empty if SI
z=0. Then the spin configu-

rations on the original kagome lattice and those of oriented
closed strings are in exact correspondence.6

The string-net mean-field theory uses the following ansatz
for the variational ground-state wave function.6 Here,

�z�X� = �
ij

zij
nij , �6�

where X represents an oriented string configuration and �zij�
represents a large number of variational parameters, and nij
represents the occupation number of the oriented link ij. The
mean-field analysis begins with a �translationally invariant�
string liquid state �or a string condensed state� where zij can
be set to a constant . Considering the spectrum of collective
modes in this state and the identification of the wave vector
where the collective modes become soft, one can in principle
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FIG. 10. �Color online� Finite-size scaling of the superfluid den-
sity �s at Jz /J�=6 for � /L=1 /J�.
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study the instability to a translational-symmetry-broken state.
More explicitly, this can be achieved by writing zij
=eEij+iAij and studying the fluctuations of Eij and Aij. It was
found that the soft mode is described by E=�E+Q+��E−Q
and A=0, where EQ is the Fourier mode at Q= �4� /3,0� and
equivalent wave vectors.6 Here � is a complex number.

The energy �or the Ginzburg-Landau theory� of the sys-
tem as a function of � can be obtained as5,6

H��� = A���2 + B���4 + C��6 + ����6� + . . . , �7�

where A, B, and C are real constants and � can be regarded
as an order parameter. The choice of the ground state is
sensitive to the phase of � and hence the sign of C basically
determines the true ground state. It was found that if C is
positive �negative�, then the FP �VBS-H� is favored.6 This
sign, however, is very difficult to determine in analytic ap-

proaches. In Ref. 6, an unrestricted variational wave-function
calculation was also done on a small system size 3�3, lead-
ing to the conclusion that the ground state may be the FP
phase.6 We think, however, that this system size is perhaps
too small for definitive conclusion. Indeed our quantum
Monte Carlo results are clearly consistent with the VBS-H
phase, and hence the negative sign of C in the Ginzburg-
Landau theory.
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